hd
="= SPARKLE V1.5

Sparkle is a trackmo loader solution for the Commodore 64 inspired by Lft’s Spindle and Krill’s loader. It
utilizes full on-the-fly GCR processing, fast data transfer, and blockwise data compression. Demos are
built using loader scripts, files are bundled together and are loaded sequentially in batches. Loader calls
are parameterless. Sparkle handles multi-disk trackmos as well. A Windows tool is provided to edit script
files and build demo disks. For version history and description of new features please see Appendix 1.

MAIN FEATURES

- Tested on 1541-Il, 1571, and Ultimate-Il+. Passed THCM'’s rigorous 24-hour test.

- Resident size: $280 bytes including loader, depacker, fallback IRQ ($0180-$02ff), and buffer
(50300-503ff). Stack is reduced to $0100-017£. The buffer contains preloaded data
between loader calls, so it needs to be left untouched.

- Three bytes are clobbered on the zeropage which can be set from the script. Defaultis $02-
$04. OK to use them between loader calls.

- 125-cycle on-the-fly GCR fetch-decode-verify loop tolerating disk rotation speeds of at least 284-
311 rpm across all four disk zones, providing high stability.

- Very simple communication code with reset detection.

- 2Bit+ATN transfer protocol, 72 bycles/block transfer speed. Transfer is freely interruptible.

- Spartan Stepping™ for seamless data transfer across adjacent tracks with zero additional
stepper delay.

- Sequential loading only. No random file access.

- Built-in blockwise packer/depacker. The packer compresses file bundles back-to-back, leaving no
partially used sectors on the disk.

- Combined fixed-order and out-of-order loading.

- Bus lock. The loader uses $dd00 for communication. The user can freely abuse $dd02 between
loader calls, but $dd00 needs to be left untouched.

- Loading under I/O space is supported.

SPARKLE WINDOWS TOOL

The Sparkle Windows tool (written in VB.NET, target .NET Framework 4.5, should work on Windows 7+)
features a simple disk monitor and a built-in script editor. D64 and script files can be opened from within
the tool or drag-and-dropped to process them. Script files use the .sls (Sparkle Loader Script) extension.
Run Sparkle as administrator to associate the .sls file extension with the tool. Once the necessary
registry entries are installed you can also build your demo disks by double-clicking script files. (This can
also be achieved by selecting Sparkle from the Open with... list after double-clicking a script file.) Sparkle
can also be used as a command line tool (e.g. sparkle mydemo.sls). A simple demo project is provided as
an example.

MAIN WINDOW

Sparkle features a simple disk monitor which is the main window of the program showing the hex and
PETSCII views of the selected sector and two toolbars. Here you can start a new disk g , open .J‘, and
save,ﬂ L& D64 files, and build demo disks from scripts. On the second toolbar, the leftmost two
buttons will show the BAM and the first sector of the directory . The next four buttons will
navigate to the first a , previous 4% next ¥, and last ¥ track on the disk. The following four buttons
will load the first |4, previous 4 , next P , or last Pl sector of the selected track. The next group of six
buttons are used to navigate through file bundles, jumping to the first sector of the first bundle |44, the
first sector of the previous bundle 44, the previous sector in the bundle =, the next sector in the
bundle * , the first sector of the next bundle PP, and the first sector of the last bundle MM. Finally, on
the right side of the toolbar you can see the current or manually select the desired track T: 18 and
sector 5: 1 . Hovering over a button will show a tooltip with the description of the button’s function
and its shortcut key. In the Hex View panel, you can perform changes in the selected sector.

3% Sparkle Open/Save D64 files Select track X
g = d Ii"\‘-‘)l Build Disk from Script = | Open Script Editor and sector About

Bl == a v 1€ € »)M 4 =+ P M| T:18 1 Interleave: 3
90 01 02 0% 04 05 06 O7 498 0% DA OB OC OD OE OF 012345678 3%ABCDETF

nn hs\n7 =2 19\ 05 53 50 41 /52 48 4ac 45 20 31/9F 35 e s = s SPAFELE 1.5
Show BAM or *?':' Navigate within - Navigate 2028, e e e
Directory ;2 track ? through bundles |_* ® * *®

L] L] L] L] L] L L] L} L] L] L
40 00 00 §F=—=—=F—==—==-47 52 45 4C 45 20 44 45 40 « SPARELE DEH
50 4F 20 2 Changetrack |00 oo oo 00 o0 00 00 00 00 I — e v o o = o s = = #« =
60 00 00 Sz Tz Us Su Sr 52 4B 4C 45 20 44 45 4D 4F ., . . « « PARKELE DEHO
70 20 2D 20 53 50 Q0 [T~~~ 00 00 00 00 00 00 — SF
80 00 00 82 12 05 41 | HexView | zo 44 45 4D 4F 20 , , , . ./ PETSCIlView yEMO
90 2D 20 53 50 41 00 v oo oo oo 00 00 00 00 00 00 — SPHAT - - = = = = = = = =
AD 00 00 22 12 05 52 4B 4C 45 20 44 45 4D 4F 2020 , . « « « FELE DEMO -
BO 20 53 50 41 52 00 00 OO0 OO0 OO0 OO0 OO0 OO0 OO0 00 00 SPAR. . . . & - - s & = .
CO 00 OO0 82 12 05 4B 4C 45 20 44 45 4D 4F 20 2D 20 , . . . - ELE DEMO -
DO 53 50 41 52 4B 00 00 00 00 00 00 00 00 00 00 00 SGPARK. &« & & & ¢ & = & = =
E0 OO0 00 82 12 05 4C 45 20 44 45 4D 4F 20 2D 20 53 , . . . - LE DEHMO - 5§
FO 50 41 52 48 4C 00 00 00 00 o0 00 00 00 00 00 00 PRAIRKL. &« &« &« &« = = = = = =

Current File: C\Sparkle\Example\Sparkle demo disk 1.d64

SCRIPT EDITOR

Scripts can be created, loaded and saved in the script editor window where demo information is
organized in a treeview structure. Script entries can be edited by double clicking or selecting them and
pressing <Enter>. This will initiate editing by selecting the editable text portion of the entry or opening a
folder dialog where a file path is needed. Editing entries that accept free text can also be initiated by
pressing an alphanumeric (a-z, 0-9) key which will immediately overwrite the entry’s last value. Pressing
<Escape> will cancel editing and restore the entry’s previous value. To finish editing, press <Tab>,
<Enter>, <Down> to move selection to the next entry or <Up> to move selection to the previous entry.
Entries that have a default value can be reset to it by deleting their current value and then leaving the
entry. DirArt files, disks, file bundles, demo files, and embedded scripts can be deleted using the
<Delete> key. The editor marks default parameters with lighter color then modified ones.

3% Script Editor O *
Demo Structure:
= This Script C\Sparkle\Example\Sparkle v1.5 2020 sls A Mew Script
= [Disk 1- 35 blocks used. 629 blocks free]

-.Disk Path: C:\Sparkle\Example\Sparkle demo disk 1.d64 Load Seript
- Disk Header: omg est. 2816 :
- Disk ID: diskl Disk information Save Script
- Demo Name: sparkle 1.5 2820 Double-click or type to edit entries
.. Demo Start: ;sl'ﬂ!!!’d

.DirArt: C:\Spark o Editing the Start Address of the Demo

Type in the demo's entry point to be used when the disk is started from Basic.

If this field is left empty, Sparkle will use the first file's load address as entry point.
Press <Enter> or <Tab> to save changes, or <Escape> to cancel editing.

. Interleave @: 85
. Interleave 1: 83
. Interleave 2: 83
- Interleave 3: 83

Autocale Size

. Zeropage: $1@ Show Details
-~ Loop: 2 Show ToolTips
- [Script: C\Sparkle\Example\Part 1\Part 1.sls]
= [Bundle 2: 11 blocks packed from 45 blocks unpacked, 24.44% of unpacked size] File Paths:
- 5tart the first file of this bundle in a new sector on the disk: YES @ Relative
- C\Sparkle\Example\Part 2\Part 2 map O Ful

- C\Sparkle\Example\Part 2\Part 2.scr
= C\Sparkle\Example\Part 2\Part 2.col

Default file parameters

.. Load to: I/o

= C\Sparkle\Example\Part 2\Part 2reg
.. Load Address: Zddez

- File Offset: Goea08004 . . Close & Build
.File Length: $8@e1 Modified file parameters
- Load to: 1/0 v Close

Script: C:A\Sparkle\Example\Sparkle v1.5 2020.sls Disk 1: 629 blocks free

The top line in the editor (This script) shows the current script’s path and file name. If you start a new
script, it will be updated once you save your script. You can also double-click this entry (or press
<Enter>) to load a script. The Add... entry and its three options (New Disk, New Bundle, New Script) are
always located at the bottom of the current script and can be used to add any of these three types to
the script.

To build a demo disk, open the editor and first add a blank disk structure. In the disk structure you can
specify all necessary settings related to this demo disk. Zeropage usage and demo looping are global
settings and can be only specified once, in the first disk’s setup. The following options are available:

Disk Path:

Disk Header:

Disk ID:

Demo Name:

Demo Start:

DirArt:

Interleave 0-3:

Here you can specify the final D64 file’s name and path. Sparkle will use this information
when the demo disks are created.

Max. 16 characters that will be used in the disk’s header in the topmost line of the disk’s
directory.

Max. 5 characters that will be located on the right side of the disk header in the
directory.

Max. 16 characters. This will be your first directory entry on the disk. Sparkle will load
the installer when this entry is loaded which will then load the first bundle on the disk.

The program entry of the demo when loaded from BASIC. Once the loader is installed, it
will load the first file bundle from the disk automatically and then it will jump to this
address. If not specified, Sparkle will use the load address of the first file in the first
bundle as a start address. (This is the only time the file order matters in a bundle.)

There are 10 sectors available on track 18 for DirArt (max 80 entries, including the one
specified at the Demo Name entry type). Each DirArt directory entry is executable and
will start the demo but only the very first one will have a non-0 block size. Sparkle
accepts 4 different file formats.

TXT files: these are standard text files with line breaks after max. 16 characters. If a line
is longer than 16 characters then Sparkle will use the first 16 characters of it as a DirArt
entry.

D64 files: Sparkle will simply import the directory structure of the D64 file. It will import
every entry type (DEL, SEQ, etc.) as PRG. The imported DirArt entries will have 0 block
lengths.

PRG files: prepare your DirArt design on your C64’s screen starting at the top left corner
and save $0400-507e8 (or as many screen rows as the number of entries your DirArt
has) as a PRG. Sparkle will ignore the first 2 address bytes and use the first 16 characters
in every 40 as a DirArt entry.

BIN files: essentially the same as the PRG type less the address bytes.

These entries specify the distance in sectors between two consecutive data blocks on
the disk. The default values are 4 for tracks 1-17 (Interleave 0), and 3 for tracks 18-24
(Interleave 1), 25-30 (Interleave 2), and 31-35 (Interleave 3). Sparkle accepts decimal
values between 1 and the number of sectors in a track less 1 (20, 18, 17, and 16,
respectively) for each disk zone (interleave MOD number of sectors per track in zone
cannot be 0). You can change the interleave to optimize Sparkle’s performance in each
disk zone separately, depending on how much raster time is left for loading. E.g. for

4

tracks 1-17 (Interleave 0), use 4 if you have more than 75% of the raster time available
on average for loading, select an interleave of 5 if you have 50-75% of the raster time
available, and an interleave of 7 may be appropriate if you only have about 25% of the
screen time. Please remember that the interleave can only be specified once for each
disk zone on the disk and will be the same for each bundle within the zone. Finding the
best interleave may need some experimentation. You may want to select one that
works best for your most loading time sensitive demo part. Once the loading sequence
enters a new disk zone, a new interleave can be used.

Zeropage: Sparkle uses 3 bytes on the zeropage. The default is $02-$04. If this interferes with your
demo (e.g. SID uses the same addresses) then you can change it here. This is a global
setting and can only be specified once, in the first disk, and it will be used for the rest of
the demo. These zeropage addresses can be used freely between loader calls. Since
loading typically runs from the main code, you can also save and restore them from IRQ
during loading if needed.

Loop: A decimal number between 0 and 255 that instructs Sparkle on how to loop the demo
once the last bundle on the last disk is loaded. The default value of 0 means no looping.
Any other number represents a disk where 1 identifies the first disk of the demo. If a
nonzero number is specified, Sparkle will wait for the specified disk to be inserted to
continue. If the value of this entry specifies the last disk then it will be reloaded in an
endless loop. This is a global setting and can only be specified once, in the first disk.

After completing the disk info section, you can start adding files to your disk. Instead of loading files one
by one, Sparkle bundles files together and loads them in batches. A file bundle is the sum of arbitrary
files and data segments designated to be loaded during a single loader call. You can put any number of
files and data segments in a bundle (as long as they do not overlap in the memory) and load them in one
call. The more you put in a bundle, the faster loading will be. A bundle may contain files for the next as
well as a subsequent demo part. You can also combine files that are loaded in the RAM under the I/O
area ($d000-S$dfff) with others that are loaded to the I/O registers at the same memory address.

To add files to your demo disk, first you need to create a new bundle (Add... -> New Bundle). Once this is
done, you will see two new entries under the bundle entry. The first one (“Start the first file...”)
determines how Sparkle will add this bundle to the disk. By default, Sparkle stores compressed bundles
back-to-back on the disk, leaving no unused space between bundles. I.e. a bundle will first occupy the
unused space in the last block of the last bundle before starting a new block in the next sector. During
loading, these transitional blocks are left in the loader buffer (50300-S03ff) between loader calls and the
next loader call will first depack the beginning of the next bundle from the buffer before loading the
next block. This behavior can be changed by double-clicking the “Start the first file of this bundle in a
new sector on the disk” entry which will toggle its value between YES and NO. Changing the value to YES
will insert the A1ign key word in the script file in the line preceding the first file of the bundle which
will instruct Sparkle to leave the last sector of the previous bundle partially unused and start this bundle
in a new sector on the disk (similar to how other loaders work). This can be helpful in loading time
sensitive demo parts. However, most of the time, this option would just inflate disk usage.

When adding files to a bundle, you can specify what and where you want to load by entering the load
address (where the data will go), offset (first byte to be loaded, 0-based), and length of the desired data
segment (number of bytes to be loaded) within the selected file. During disk building, Sparkle will only
compress the selected segment of the file. By default, Sparkle assumes that the file is a PRG
independently of the file extension and uses the first two bytes of the file as load address, 2 as offset,
and (file length-2) as length. The only exception is SID files where file parameters are extracted from the
file automatically. If you change the file’s load address then Sparkle will presume that the file is NOT a
PRG and it will change the offset to 0 and will use the file’s full length as length. Thus, you will need to
make sure that the offset and file length are correct after changing the load address.

If a data segment overlaps the I/O area you can select whether it is to be loaded to the I/O area (e.g. VIC
registers, color RAM, etc.) or in the RAM under the 1/O space by double-clicking the “Load to” entry
under the file. If the file is destined for the RAM under the 1/O registers Sparkle will mark the filename
with an asterisk (*) which indicates that the loader will need to turn I/O off during decompression of the
specified data segment. Sparkle examines the I/O status of every data block separately and sets $01
accordingly during decompression.

Sparkle sorts files within a bundle during compression to achieve the best possible compression ratio.
Therefore, file order within a bundle can be random in the script.

Demo scripts can become very long, so you may want to create shorter scripts and then add these to
your main script. You can add whole disks to your script this way. If a script is saved using relative file
paths then the script’s path will be used to calculate file destinations when it is embedded in another
script. When Sparkle reaches a script entry during disk building, it will first process its content before
continuing with the next entry. Scripts cannot be inserted into an existing file bundle. l.e. files in the
embedded script will always start a new file bundle, and won’t be added to the current bundle.
Embedded scripts cannot be edited from their parent script, only when loaded to the Editor separately.

Disks, bundles, and embedded scripts can be freely rearranged. If a disk section does not precede the
first bundle then Sparkle will use default disk parameters for the first disk (except if this script is meant
to be embedded in another one when the disk section of the parent script will be used). If two disk
sections follow each other without any demo files between them then the second one will overwrite the
values of the first one during disk building.

Once your script is finished, you can build your demo by clicking the “Close & Build” button. The script
remains active until another one is loaded or created. Opening the Editor again will show the active
script.

MANUAL SCRIPT EDITING
Use the following template to manually prepare or edit your scripts:

[Sparkle Loader Script]

Path: your path\your dé4 file

Header: max. 16 characters as in the directory header
ID: max. 5 characters as in the directory ID

Name : max. 16 characters

Start: xxxx (program entry when disk is started from Basic)
DirArt: your path\your dirart.txt file

ILO: n (sector interleave of n>0 for tracks 1-17)

ZP: xX (set once in first disk info section)

Loop: 0 for no looping or disk number 1-255 (set once)
File: your path\your file* xxxXxX VYyVVVVVVY 72227

File: your path\your file XXXX YYVYVVVY 72227
Align

Script: your path\your script file to be inserted here

The script must start with the file type identifier in brackets and must contain at least one file entry.
Everything else is optional and can be omitted. If Start is omitted Sparkle will use the load address of
the first file entry as start address. Entry types (Path, Header, ID, Name, Start, DirArt,
IL0O-IL3, ZP, Loop, File, Script)and their values are separated by tabs. The loader’s
zeropage usage (hex byte format, default is 02) and the Loop entry type can only be set once, in the
first disk’s setup. File bundles are separated by blank lines. Files in a single bundle are in consecutive
lines. File paths can be absolute or relative to the script’s folder. After at least one file or script entry is
added to the script, you can start a new disk simply by adding new disk info entry types (Path,
Header, etc.) followed by the next disk’s files. See example demo project’s script for details.

You can specify three parameters for each file entry, separated by tabs. The first one is the load address
of the file segment, the second one is an offset within the original file that marks the first byte to be
loaded, and the last one is the length of the file segment. Parameters are hex numbers in word format
(max. 4 digits) for the file address and file length, and dword format (max. 8 digits) in the case of the file
offset, prefix is not needed. Parameters can be omitted but each one depends on the one on its left. l.e.
you cannot enter the offset without first specifying the load address. Sparkle can handle SID and PRG
files so parameters are not needed for these file types unless you want to change them. If all three
parameters are omitted then Sparkle will load the file as a PRG file: it will use the file’s first 2 bytes to
calculate the load address, offset will be 2, and length will be (file length — 2). The only exception is files
shorter than 3 bytes for which at least the load address is mandatory. If only the load address is entered
then Sparkle will use 0 for the offset and the file’s length as length. Sparkle will calculate the length as
(original file’s length — offset), but max. (510000 - load address) if the load address and the offset are
given but the length is not. The “A1ign” entry type is used in a new line preceding a bundle or script
entry to align it with a new sector on the disk (See the Script Editor section for details).

By default, Sparkle writes #535 to $01 and turns the BASIC and KERNAL ROMs off during loading but
leaves I/O on. If any part of a file is to be loaded in the RAM under the I/O area ($d000-$df £ f), an
asterisk (*) must be added to the end of the file name (see template above). This will instruct Sparkle to
turn off the I/O area while unpacking the file. If the * is omitted the file will be loaded to the I/O area
(VIC, SID, and CIA registers, etc.). A bundle may contain two file segments sharing the same load address
if one is destined under I/O and the other one is to be loaded to the I/O area.

Sparkle will ignore any unrecognized entries. Resaving a script from the editor will result in loosing these
entries.

RUNTIME CONSIDERATIONS

The installer, C64 resident code, and drive code take 8 blocks on track 18. Thus, you have the entire 664
blocks for your demo and the remaining 10 blocks of track 18 for DirArt. Loading and running any entry
from the disk’s directory will start the installer which will:

e install the C64 resident code and the drive code,

e setthelflag,

e turn off BASIC and KERNAL ROMs by writing #535 to $01,
e reduce the stack to the lower $80 bytes,

e set the NMlI vector to an rti instruction,

e |oad the first file bundle,

e and jump the to the address specified in the script.

During loading, the value of SO1 can be either #534 or #535 depending on the destination of the files in
the bundle. Once the first bundle is loaded, the loader will restore $01 to #535 and it will jump to the
start address as specified in the script (or to the first byte of the first file in the script if a start address
was not specified) without changing the | flag (IRQs remain disabled). The installer and the loader do not
alter any other vectors or VIC registers.

From your demo, the following functions are available:
- Loader call:

jsr $0180 //Parameterless

This parameterless subroutine call will load the next bundle of files as specified in the script. The
loader writes #535 to $01 at the beginning of every loader call and will return with this value in
S01. Loader calls do not clobber the | flag. When the loader is called, it first depacks the first
partial block (if such exists) of the next bundle from the buffer before receiving the next block
from the disk. The 1/O area may be turned on or off during depacking depending on where the
data are designated. Once the last bundle on a disk is loaded the loader moves the read/write
head to track 18 and checks the last three bytes of the BAM to determine whether there is a
next disk side to be loaded (these also control demo looping on the last disk). In case of a multi-
disk demo, the next (standard) loader call will instruct the loader to wait for disk flip after which

the next file bundle is loaded automatically. The loader will reset the drive if there are no more
disks.

- Fallback IRQ Installer:

jsr $01d5 //X/A = IRQ subroutine vector Lo/Hi

Use it to install a simple fallback IRQ with a music player call or any other function. The IRQ
routine is located at $02e6 and the subroutine call in it initially points at an rts instruction.
The low and high bytes of the subroutine address need to be in the X and A registers,
respectively before the IRQ installer is called. You need to set all the necessary 1/O registers
($d012, etc.) before installing the fallback IRQ as the installer will only change the
Sfffe/Sffff IRQvector.Use jsr $01db if you wantto enable the fallback IRQ without
changing the subroutine vector. The | flag is set during the initialization of the loader and
remains set after loading the first bundle is completed. Calling the IRQ installer does not change
the | flag allowing the user to set or clear it at the desired moment.

CAVEATS

VIC bank selection must be done by writing #$3c-#S$3f to $dd02. Do not change $dd00 while the
drive code is active on the drive as this may make the drive believe that the C64 is requesting the next
bundle. Once the last bundle is loaded, the drive will reset and $dd00 can be freely overwritten.

Loading to pages 1-3 is not recommended as it would overwrite the loader or preloaded data in the
buffer. While Sparkle can load files compressed by another packer such as Exomizer, make sure to
restore the stack pointer and any other registers and zeropage values as required by the packer before
you start your program. Restoring the stack pointer will result in overwriting Sparkle’s resident code on
the stack, so further loader calls will not be possible.

Start the Windows tool from a local or removable drive as it does not seem to work properly from
network drives.

DISCLAIMER

Sparkle is a free software and is provided “as is”. It is a hobby project of a hobby coder so use it at your
own risk and expect bugs. | do not accept responsibility for any omissions, data loss or other damages.
Please credit me in your production should you decide to use Sparkle. Feel free to contact me with any
guestions via PM on CSDB or by emailing to spartaofomgATgmailDOTcom.

Please find the most up-to-date version of Sparkle on GitHub: https://github.com/spartaomg/Sparkle

Sparta/OMG, 2019-2020

https://github.com/spartaomg/Sparkle

APPENDIX

VERSION HISTORY

V1.5

- New packer algorithm resulting in about 20% faster decompression with only about 0.3-0.5% decrease
in compression efficiency. This typically means only a few extra blocks per disk side while loading is
faster, especially under heavy processor use as Sparkle spends significantly less time depacking.

- Sparkle can now handle not only TXT but also D64, BIN, and PRG DirArt file formats.

- IRQ Installer moved to $01d5. If you want to install the Fallback IRQ without changing the subroutine
callinitthencall jsr $01db.

- Bug fixes. Thanks to Visage and Schedar of Lethargy and Rastlin/G*P for reporting bugs and testing.

V14

- New feature: Sparkle shows a warning if there are multiple active drives on the serial bus. The demo
will continue once all devices but one are turned off. Thanks to Dr. Science/ATL for this feature request.

- Removed optional packer selection. Sparkle now uses an updated version of its former “better” packer
with an optimized decompression algorithm.

- Updated GCR loop for increased stability. Sparkle now has a disk rotation speed tolerance of at least
284-311 rpm across all four speed zones.

- Loader “parts” are renamed to file bundles to avoid confusion.
- The disk monitor now highlights the [00 F8] file bundle separator sequence.
- Bug fix: the editor did not calculate bundle and disk sizes correctly.

- Other minor bug fixes and improvements.

V13

- New feature: script embedding. If your script is very long, you can save part of it in a separate file and
then add this to your script using the “Script:” entry type followed by <TAB> and the script file’s
path. When Sparkle reaches a script entry during disk building, it will first process its content before
continuing with the next entry. You can even add whole disks to your script this way. Scripts cannot be
inserted in an existing file bundle. l.e. files in the embedded script will always start a new file bundle,
and won’t be added to the current bundle. If relative paths are used, Sparkle will use the path of the
embedded script to calculate the path of the files in it.

10

- New feature: demo looping. Use the “Loop : ” entry type followed by <TAB> and a decimal value
between 0-255 in the first disk’s info section to determine your demo’s behavior once it reaches its end.
The default value is 0 which will terminate the demo. A value between 1-255 will be interpreted as a
disk number where 1 represents the first demo disk. Once the last bundle on the last disk is loaded
Sparkle will wait for this disk to be inserted to continue. If you use the last disk’s number then Sparkle
will reload the last disk in an endless loop. This entry type can only be used once in a script. If not
specified then the default value of 0 will be used.

- New feature: aligning a bundle with a new sector on the disk. By default, Sparkle compresses files back-
to-back, not leaving any unused space on the disk. If the length of a bundle changes during demo
development, it will affect the compression and distribution of every subsequent bundle on the disk.
This may adversely influence the timing of the demo. From the editor, double-click the “Start this bundle
in a new sector on the disk” line under the bundle node to change its value to YES from NO where this
type of timing is crucial to force Sparkle to always start the bundle in a new sector on the disk. If you
prefer to manually edit your script, use the “A1ign” entry type in a new line preceding a bundle to
achieve the same result.

- New feature: custom sector interleave. Sparkle now allows the user the specify the interleave for all
four speed zones on the disk. The default is 4 for tracks 1-17 (ILO), and 3 for the rest of the disk (tracks
18-35, IL1-IL3). Use ILn: <TAB>N in the disk info section in your script where n=0-3 specifies the zone
and N>0 is a decimal value for the desired interleave to be used during disk building.

- New feature: Sparkle now generates an exit code when running from command line. The exit code is
non-0 if there is an error during disk building.

- Improved and updated editor to accommodate the new features. The editor now accepts
alphanumeric (a-z, 0-9) characters in addition to <Enter> to start editing an entry. Just press the first
character of the new value to overwrite the previous one, or <Enter> if the first character is not
alphanumeric. Once you are done editing, press <Enter> or <Down> to step to the next entry, or <Up> to
step back to the previous one.

- Updated, more flexible script handling:
- Sparkle now recognizes both LF and CRLF line endings.

- The script entry “New Disk” is no longer needed to start a new disk during manual script
editing. Just add the next disk’s info after the last file or script entry. Make sure there is at least
one file entry after every disk info section. Otherwise, the next disk info section will overwrite
the previous one.

- Sparkle will skip any unrecognized lines in the script. This can be used to manually comment
your script. Manual comments will be ignored in the editor window and will be lost when the
script is resaved from the editor.

- File offset values can be as large as S££ £ £ ££££. The maximum value of file address and
length remains Sffff.

- Bug fixes. Thanks to Raistlin/G*P and Visage/Lethargy for testing and feature requests.

11

V1.2

- Optional better packer. Sparkle now offers two versions of its packer. The original, faster one, and a
new, better one. The new packer results in better compression at the expense of slower packing and
depacking compared to the original faster but less effective option.

- Minor improvements in the C64 code saving about 10000 cycles on the depacking of a disk side.
- GUl update.

- Bug fixes.

Vi1

- Option for selecting ZP usage in the script.
- Improved default file parameter handling.
- Minor changes in the editor.

- Bug fixes related to loading under I/0.

V1.0

- Initial release.

12

